Identifying influential observations in Bayesian models by using Markov chain Monte Carlo

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identifying influential observations in Bayesian models by using Markov chain Monte Carlo

In statistical modelling, it is often important to know how much parameter estimates are influenced by particular observations. An attractive approach is to re-estimate the parameters with each observation deleted in turn, but this is computationally demanding when fitting models by using Markov chain Monte Carlo (MCMC), as obtaining complete sample estimates is often in itself a very time-cons...

متن کامل

Bayesian Computation Via Markov Chain Monte Carlo

A search for Markov chain Monte Carlo (or MCMC) articles on Google Scholar yields over 100,000 hits, and a general web search on Google yields 1.7 million hits. These results stem largely from the ubiquitous use of these algorithms in modern computational statistics, as we shall now describe. MCMC algorithms are used to solve problems in many scientific fields, including physics (where many MCM...

متن کامل

Bayesian Generalised Ensemble Markov Chain Monte Carlo

Bayesian generalised ensemble (BayesGE) is a new method that addresses two major drawbacks of standard Markov chain Monte Carlo algorithms for inference in highdimensional probability models: inapplicability to estimate the partition function and poor mixing properties. BayesGE uses a Bayesian approach to iteratively update the belief about the density of states (distribution of the log likelih...

متن کامل

Markov chain Monte Carlo for Bayesian inference

The chord length transform (CLT) is a useful tool to analyze fibre structures. Assuming e.g. arandom process of straight fibres then a realization of such a process can be observed in a binaryimage. The CLT maps to each point in the foreground of a binary image and to each direction thelength of the related chord, where the chord is the connecting part of a line in the direction...

متن کامل

Ensemble Bayesian model averaging using Markov Chain Monte Carlo sampling

Bayesian model averaging (BMA) has recently been proposed as a statistical method to calibrate forecast ensembles from numerical weather models. Successful implementation of BMA however, requires accurate estimates of the weights and variances of the individual competing models in the ensemble. In their seminal paper (Raftery et al. Mon Weather Rev 133:1155–1174, 2005) has recommended the Expec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics in Medicine

سال: 2011

ISSN: 0277-6715,1097-0258

DOI: 10.1002/sim.4356